Menger spaces and their relatives: basic facts

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Hejnice, January 31, 2016

Menger spaces and relatives

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$. σ -compact \rightarrow Hurewicz \rightarrow Scheepers \rightarrow Menger \rightarrow Lindelöf. Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \left\{ \left\{ x : x(n) = k \right\} : k \in \omega \right\}.$

Folklore Fact. For analytic sets of reals Menger is equivalent to σ -compact.

In L there exists a co-analytic Menger subspace of ω^ω which is not $\sigma\text{-compact}.$

Examples under CH.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N. Every Sierpinski set is Hurewicz because of the following characterization due to Scheepers

Theorem

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Proof. (\rightarrow) . Let $G = \bigcap_{n \in \omega} O_n$. Set $\mathcal{U}_n = \{U : U \subset P \text{ is open and } \overline{U} \subset O_n\}$. Let $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ be such that $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. Then $X \subset \bigcup_{n \in \omega} \bigcap_{m \ge n} \cup \mathcal{V}_m \subset G$.

Corollary

Luzin sets are not Hurewicz.

ZFC examples

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b}
ightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$.

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*.

Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz. "All b-concentrated sets are Hurewicz" is independent.

Preservation by unions

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Let $\langle \mathcal{V}_n^k : n \in \omega \rangle$ be such that $\mathcal{V}_n^k \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n^k : n \in \omega \}$ is a large (resp. γ -)cover of X_k . Set $\mathcal{V}_n = \bigcup_{k \leq n} \mathcal{V}_n^k$.

Corollary

Menger and Hurewicz properties are preserved by unions of families of size < b.

Proposition

 $\mathrm{add}(\mathrm{Menger}) \in [\min\{\mathfrak{b},\mathfrak{g}\},\mathrm{cf}(\mathfrak{d})]$

Π

Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $\begin{array}{l} 2^{\omega} \setminus Q = \{x_{\alpha}: \alpha < \omega_1\}. \quad \text{In the construction of a Sierpinski set by}\\ \text{transfinite induction at each stage } \alpha \text{ we can pick a point } s_{\alpha} \text{ outside}\\ \text{of a given measure zero set } Z_{\alpha} \subset 2^{\omega}. \ 2^{\omega} \text{ has a natural structure of}\\ \text{a topological group, and the sum of any two measure 1 sets is the}\\ \text{whole group. Choose } s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha} \text{ such that } s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha}\\ \text{and } s_{\alpha}^i + \{s_{\beta}^{1-i}: \beta < \alpha\} \cap Q = \emptyset. \text{ Set } S_i = \{s_{\alpha}^i: \alpha < \omega_1\}. \end{array}$

Problem

- Is it consistent that the product of two metrizable Menger spaces is Menger?
- Is it consistent that the product of two metrizable Hurewicz spaces is Hurewicz?
- Is it consistent that the product of two metrizable Hurewicz spaces is Menger?

Menger spaces and forcing

Theorem (Essentially A. Dow)

Let (X, au) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$.

Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Proof of 1. Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\dot{\mathcal{U}}, X, \mu, \ldots \in M$. Given any $x \in X$, consider

 $\begin{array}{l} D_x = \{p \in Fn(\mu,2) \cap M : \exists U \in \tau \cap M \ (x \in U \wedge p \Vdash U \in \dot{\mathcal{U}}).\} \\ D_x \text{ is dense in } Fn(\mu,2) \cap M : \ \text{Fix } p \in Fn(\mu,2) \cap M \text{ and for every} \\ y \in X \ \text{find } p_y \leq p \text{ and } y \in U_y \in \tau \text{ such that } p_y \Vdash U_y \in \dot{\mathcal{U}}. \\ \{U_y : y \in X\} \text{ is an open cover of } X \text{ is } V, \text{ so it contains a countable} \\ \text{subcover } \{U_{y_n} : n \in \omega\}, \text{ as witnessed by } \{p_n : n \in \omega\} \subset Fn(\mu,2). \ \text{By} \\ \text{elementarity, we can assume } \{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M, \text{ and} \\ \text{hence } \{U_{y_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M. \ \text{Pick } n \text{ such that } x \in U_{y_n} \text{ and} \\ \text{note that } p_n \in D_x. \end{array}$

Let G be $Fn(\mu, 2)$ -generic. Then $H := G \cap M$ is $Fn(\mu, 2) \cap M$ generic. $\dot{U}^G \cap M$ covers X: given $x \in X$, find $p \in D_x \cap H$ and $U \in \tau \cap M$ witnessing this, and note that $p \in G$ and $p \Vdash U \in \dot{\mathcal{U}}$, and hence $x \in U \in \dot{\mathcal{U}}^G$. \Box

Menger game

Game associated to Menger's property: In the n th move, I chooses an open cover \mathcal{U}_n of X, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$. Player II wins if $\{\cup \mathcal{V}_n : n \in \omega\}$ covers X. Otherwise, player I wins. A sequences $\langle \mathcal{U}_n, \mathcal{V}_n : n \leq \gamma \rangle$ is called a *play* in the Menger game, where $\gamma \leq \omega$.

Theorem (Hurewicz 192?)

X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F. Wlog, F instructs I to play with countable increasing covers. Set $F(\emptyset) = \mathcal{U}_{\emptyset} = \{U_{\langle n \rangle} : n \in \omega\}$ with $U_{\langle n \rangle} \subset U_{\langle n+1 \rangle}$ for all n. Sp-se II responds with $U_{\langle n \rangle}$. Then we set $F\langle U_{\langle n \rangle} \rangle = \{U_{\langle n,k \rangle} : k \in \omega\}$ and assume wlog $U_{\langle n,k \rangle} \subset U_{\langle n,k+1 \rangle}$ for all k. In general, given $\sigma = \langle n_i : i \leq m \rangle \in \omega^{m+1}$, it gives rise to a play

$$\begin{array}{l} \left\langle \mathcal{U}_{\emptyset}, U_{\langle n_0 \rangle}; \ F \langle U_{\langle n_0 \rangle} \rangle = \mathcal{U}_{\langle n_0 \rangle}, U_{\langle n_0, n_1 \rangle}; \ \dots, \\ F \left\langle U_{\langle n_0 \rangle}, \dots, U_{\langle n_0, \dots, n_{m-1} \rangle} \right\rangle = \mathcal{U}_{\langle n_0, \dots, n_{m-1} \rangle}, U_{\langle n_0, \dots, n_{m-1}, n_m \rangle} = U_{\sigma} \\ \end{array}$$
in which I uses F , and the next response of I is $\mathcal{U}_{\sigma} = \{U_{\sigma \land k} : k \in \omega\}$
with $U_{\sigma \land k} \subset U_{\sigma \land \langle k+1 \rangle}$. Wlog, $U_{\sigma} = U_{\sigma \land 0}$.

Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min\{i : \{\sigma_k(i) : k \in \omega\} \text{ is unbounded}\}$. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau \land \sigma_k(m)}$ for all $k \in K$, and so $\{U_{\sigma_k \upharpoonright (m+1)} : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k} \supset U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction

Let
$$f \in \omega^{\uparrow \omega}$$
 be such that $\bigcup_{n \in \omega} O_{f(n)}^n = X$. Look at the play $\langle \mathcal{U}_{\emptyset}, U_{\langle f(0) \rangle}; \dots, \mathcal{U}_{f \upharpoonright n}, U_{f \upharpoonright n \uparrow f(n)} = U_{f \upharpoonright (n+1)}; \dots \rangle$. Since $U_{f \upharpoonright (n+1)} \supset O_{f(n)}^n$, this play is lost by I .

A space (X, τ) is called a *D*-space, if for every $f: X \to \tau$ such that $x \in f(x)$ for all x, there exists a closed discrete $D \subset X$ such that $X = \bigcup_{x \in D} f(x)$.

Problem

Is every regular Lindelöf space a D-space?

Menger spaces are D-spaces (Aurichi 2010).

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}.$ Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{ f(x) : x \in F_0 \}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$. Letting $U_1 = \bigcup \{ f(x) : x \in F_1 \}$, | suggests $\{U_0, U_1\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1)\}.$ Suppose that II replies with $\{U_0, U_1\} \cup \{f(x) : x \in F_2\}$ for some $F_2 \in [X \setminus (U_0 \cup U_1)]^{<\omega}$. Letting $U_2 = \bigcup \{f(x) : x \in F_2\}$, | suggests $\{U_0, U_1, U_2\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1 \cup U_2)\}$, and so on.

There is a play lost by I, which yields a sequence $\langle U_n = \bigcup_{x \in F_n} f(x) : n \in \omega \rangle$ covering X s.t. $F_{n+1} \subset X \setminus \bigcup_{i \le n} U_n$. $\bigcup_{n \in \omega} F_n$ is a closed discrete kernel of f. \Box Thank you for your attention.